If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x-3+3x^2=0
a = 3; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·3·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{13}}{2*3}=\frac{-4-2\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{13}}{2*3}=\frac{-4+2\sqrt{13}}{6} $
| X+6/18=2(x/12) | | (3x+5)(8x+4)=0 | | 2x-10=3x+2 | | 3x+x+24=x | | 5(8x-3)=-5 | | 6(2x+6)=42 | | 2(4x-12)=48 | | 5(4a+4)=140 | | 330120/x=280.00 | | 0.32=2x/x | | 2f^2+1=4f | | 3x+2(4x-4)=4 | | x^2+45x-180=0 | | (1+n)^20=2 | | (5x-4)/(2x+1)-1=0 | | 42x+1=32 | | 7p+10=17 | | 6x+3=3x+1200 | | 50x+30x=120 | | x+153=40x | | 6x+640=3x-320 | | 6x+640=3x-300 | | F(x)=10x+11/5x+4 | | 36^2-12x+1=0 | | 50x+90(500-x)=70*500 | | 50x=90*500-90x=70*500 | | 25(x+9)=15(2x+9) | | 7x+55=(-5x-15) | | -4(-5x-12)=4x+176 | | 180=(90+X)+(90-x) | | 2x^2-39x+180=0 | | 2x^2-39x-180=0 |